\square

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Digital Electronics

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. i) Convert the following expression in standard SOP and also represent in decimal notation form $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AC}+\mathrm{BC}+\mathrm{AB}$
ii) Convert the following expression in standard POS form and also represent in decimal notation $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{C})$
(08 Marks)
b. Reduce the following using K-map and draw the logic diagram using NAND gates for the reduced expression: $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(6,7,9,10,13)+\operatorname{dc}(1,4,5,11,15)$
(08 Marks)

OR

2 a. Reduce the following function using K-map technique and Implement using NOR-gates $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi \mathrm{M}(0,3,4,7,8,10,12,14)+\mathrm{dc}(2,6)$
(06 Marks)
b. Simplify the following using Quine- M_{C} Cluskey method and draw the logic diagram using NAND gates for the reduced expression:
$\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,2,3,5,9,12,14,15)+\sum \mathrm{dc}(4,8,11)$
(10 Marks)

Module-2

3 a. Write and explain 2 to 4 decoder.
(06 Marks)
b. Implement the following functions using ICS 74×138
$\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(0,4,8,10,14,15)$
$\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(3,7,9,13)$
(10 Marks)

OR

4 a. Implement the following Boolean function with 8:1 MUX
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,6,10,11,12,13)+\mathrm{dc}(3,8,14)$
(08 Marks)
b. Explain the look ahead carry generator.
(08 Marks)

Module-3

5 a. Write and explain JK Flip-Flop by Truth table and logic diagram.
(06 Marks)
b. Write the excitation table of JK Flip-Flop.
(04 Marks)
c. Write the characteristic equation of SR Flip-Flop.

OR

6 a. Explain the Master-slave JKFF with logic diagram and truth table.
(10 Marks)
b. Explain the Negative Edge triggered JK Flip-Flop.
(06 Marks)

Module-4

7 a. Write and explain parallel in serial out shift register by writing logic diagram and timing diagram.
(10 Marks)
b. Write and explain 3-bit asynchrous counter.

OR

8 a. Design a mod-6 synchronous counter using JK Flip-Flop.
(10 Marks)
b. Write and explain counter applications.

Module-5

9 a. Write the difference between Moore model and Mealy model.
(06 Marks)
b. Design a mealy type sequence detector to detect a serial input sequence of 101 .

OR

10 a. Design a clocked sequence circuit that operates according to the state diagram shown in Fig.Q.10(a). Implement the circuit using D-Flip-Flop.

Fig.Q.10(a) State diagram
(08 Marks)
b. Obtain the transition table for the given state diagram shown in Fig.Q.10(b) and design the sequential network using JK Flip-Flop.

Fig.Q.10(b) State diagram
(08 Marks)

